
Anonymous Mail Forwarding Vulnerabilities in FormMail 1.9

Ronald F. Guilmette <rfg@monkeys.com> - Infinite Monkeys & Co.
Justin Mason <jm+fma@jmason.org> - maintainer of SpamAssassin

Sun Jan 23, 2002

Introduction

This advisory describes various methods and mechanisms for the remote abuse of the widely-
used FormMail script, version 1.9, to send arbitrary e-mail messages to arbitrary recipients with-
out the consent of, and against the wishes and intentions of those who have installed the script on
their web servers. Essentially all of the exploits described herein are also applicable to earlier
(pre-1.9) versions of FormMail.

General information on the widely-used free FormMail CGI script may be found at the following
URL:

http://worldwidemart.com/scripts/formmail.shtml

Impact

By manipulating inputs to the FormMail CGI script, remote users may abuse the functionality
provided by FormMail to cause the local mail server on the same (web) server system to send
arbitrary e-mail messages to arbitrary e-mail destination addresses. Such e-mail messages may
contain real or forged sender e-mail addresses (in the From: headers) entirely of the attacker’s
choosing. In some cases, the envelope sender addresses of such messages may also be set to
arbitrary values by the attacker.

When and if the vulnerabilities described below do exist (which is dependent, in some cases,
upon script installation configuration choices and web server configuration choices) and when
and if they are in fact exploited by an outside attacker, message recipients will have only incom-
plete e-mail tracing information available in the message e-mail headers. This incomplete trac-
ing information will lead back only as far as the web server that hosts the FormMail script. The
IP address actually used to initiate the messages will not be available to these recipients. The
originating IP address of the attacker may or may not be available (in local web server logs) to
the administrator of the exploited web server, depending on local web server logging, log file
retention policies, and the length of time that elapses between exploitation and the time the local
administrator becomes aware of the exploitation. (Of course, even in cases where web server
logs are available, tracing information contained therein may perhaps allow tracing of the
attacker only as far back as whatever anonymizing HTTP proxy the attacker used.)

- 1 -



Notification

We hav e followed the notification guidelines laid out in:

http://www.wiretrip.net/rfp/policy.html

with respect to this advisory. Both authors of the present advisory attempted to contact the
FormMail maintainer via the e-mail address given on the FormMail home page more than five
working days prior to publication of this advisory. No response from the maintainer was
forthcoming. Attempt were also made to contact the maintainer via telephone but were
unsuccessful.

Background

The FormMail script has a long and unenviable history with regards to security issues.
Originally intended as a helpful free CGI script, usable in the construction of simple interactive
‘contact us’ type web forms, it was originally created and distributed July 9, 1995 and
subsequently underwent several revisions culminating in version 1.6 which was released May 2,
1997. The 1.6 version became widely used, and copies of the 1.6 version are still installed and
publicly accessible in many locations at the present time.

Sometime between the release of the 1.6 version of FormMail and March, 2001, various Internet
users became aware that spammers were exploiting the relatively modest and weak security
checks within the 1.6 version to send large quantities of unsolicited ‘spam’ e-mail to large
numbers of recipients via exploited FormMail scripts. In effect, spammers were using the
exploited FormMail scripts in ways that rendered them functionally equivalent to anonymizing
open e-mail relay servers. Eventually, someone filed a public security advisory regarding these
exploitations and the now evident security problems with the FormMail script.[1] Later reports
indicated a belief that spammers were actively searching the net for exploitable FormMail
scripts.[2] At least two different parties have apparently been motivated (by FormMail’s evident
security problems) to create and distribute their own independently-developed versions of
FormMail which allegedly close the security loopholes.[3]

Subsequent to the release of the 1.6 version of the script, 1.7 and 1.8 versions were also released.
On his web site, the FormMail author himself notes that these versions have unspecified (and
perhaps different; see footnotes) security vulnerabilities, and that all users should upgrade to
version 1.9 ‘‘IMMEDIATELY’’.

Version 1.9 of FormMail was released by its author on or about August 3, 2001, according to the
comments in the script. This version has been alleged to rectify the various previously identified
security issues with FormMail, including its prior ability to be manipulated into behaving like an
anonymizing open mail relay.[4]

- 2 -



Pre-1.9 Exploitation

Exploitation of FormMail versions prior to 1.9 for the forwarding of e-mail messages which have
been effectivelyanonymized[5] was rendered trivial by the script’s total reliance on information
transmitted by the web client to the web server (and hence to the FormMail CGI script) for both
authentication of the request and for specification of recipient e-mail address(es) for each
message.

FormMail’s authentication of incoming requests, such as it was (and is, in version 1.9), is limited
to the following rather rudimentary check on theHTTP_REFERER environment variable passed
to the script from the local web server. (The web server, in its turn, obtains this value from the
Referer: HTTP header supplied by the HTTP client.)

if ($ENV{’HTTP_REFERER’}) {
foreach $referer (@referers) {

if ($ENV{’HTTP_REFERER’} =˜ m|https?://([ˆ/]*)$referer|i) {
$check_referer = 1;
last;

}
}

}
else {

$check_referer = 1;
}

Note that further up in the script, the original script installer is required to have defined the
@referers array to a list of strings, each of which is supposed to be a domain name or IP
address. These domain names and/or IP addresses are, by their inclusion in the installer-supplied
definition of@referers, effectively authorized to run web servers that will serve up HTML
pages containing HTML forms that may work with this specific locally-installed copy of
FormMail. So, for example, if the local FormMail installer had wanted to limit the script’s usage
so that it could only be used in conjunction with HTML forms resident on the web servers known
aswww.example.com andwww.example2.com then the installer would have previous
defined the@referers array as follows:

@referers = ("www.example.com", "www.example2.com");

There exist several ways to easily bypass and circumvent theHTTP_REFERER checking code
shown above. The most obvious way, and the way that most attackers will certainly use is sim-
ply to decline to provide anyReferer: header at all as part of the HTTP request. In such
cases, the attacker will effectively ‘‘pass’’ theHTTP_REFERER validation test[6], and the
remainder of the FormMail script will then be executed.

Even though it is clear that the simplest and easiest way to circumvent theHTTP_REFERER
check in FormMail is simply to avoid including anyReferer: header in the HTTP request,

- 3 -



for the sake of completeness we would also like to note some other methods whereby this same
check could be circumvented even in programming contexts[7] where omission ofReferer:
headers may be difficult or impossible to achieve.

Specifically, it should be noted that the Perl regular expression matching attempt:

$ENV{’HTTP_REFERER’} =˜ m|https?://([ˆ/]*)$referer|i

is not left-anchored prior to thehttps?: scheme specification nor is it right-anchored after the
$referer domain name.

The lack of left-anchoring prior to thehttps?: scheme specification portion of the regular
expression allows an attacker to ‘‘pass’’ this simple-mindedHTTP_REFERER validation test as
long as theHTTP_REFERER value (set from the HTTPReferer: header) is some URL con-
taining a match for the regular expression anywhere within its entire length.

An attacker may easily exploit this lack of left-anchoring by simply loading, and then submitting
an HTML form to the desired FormMail CGI from the attacker’s own local web server using a
extended ‘spoof’ URL which contains a substring matching the regular expression somewhere
within the entire URL string. The matching substring may be presented as part of the right con-
text of the complete URL, and specifically within a portion of the URL that will, by convention,
be ignored by many/most web servers when loading a page corresponding to the given URL. For
example, the following URL:

http://www.attacker.tld/myform.html?http://www.victim.com/

if included as the URL in an HTTPGET request will typically result in the HTTP client receiv-
ing a copy of the same web page that would have been obtained if the requested URL had been
just:

http://www.attacker.tld/myform.html

because a typical web server will simply ignore the trailing portion of the URL past the question
mark.[8] Typical HTTP clients on the other hand, if asked to perform such aGET operation,
will do so (with the help of the relevant web server) but will then preserve the entire original
request URL and will later present that as theReferer: value, when and if some HTML form
on the page is the subject of a submit operation.

The HTTP client’s preservation of the entire URL, including the trailing ‘spoof’ substring,
allows most typical HTTP clients to trivially pass FormMail’s simple-mindedHTTP_REFERER
validation test even if the attacker has neither built nor obtained any HTTP client software that
allows for suppression ofReferer: headers[9], and even if he is writing his own attack soft-
ware in some language (e.g. Javascript) that otherwise makes the implementation of attacks on
web CGIs particularly easy and convenient.

- 4 -



The lack of right-anchoring after the$referer portion of the regular expression may also be
exploited by an attacker wishing to create a modified FormMail HTML submission form on a
web server of his own choosing. This may be more difficult than exploiting the lack of left-
anchoring however, and may perhaps only be achievable with the aid of some cooperative DNS
server. Giv en the availability of such a server however, a DNS ‘A’ record could easily be defined
for an fully-qualified domain name such as:

www.victim.com.attacker.tld

and that ‘A’ record could be defined with an IP address of the attacker’s choosing. In this case,
the attacker could easily load his malevolent locally-installed HTML exploit form (which has its
ACTION= clause set to point to the victim’s FormMail) into his browser via a URL such as:

http://www.victim.com.attacker.tld/myform.html

The attacker could then simply submit the form and it would ‘pass’ the simple FormMail
HTTP_REFERER validation check.

Note that all three methods for circumventing FormMail’sHTTP_REFERER validation remain
present in the current (1.9) version of the script, i.e. (1) complete omission/suppression of
Referer: headers and (2) exploitation of the lack of right-anchoring and (3) exploitation of
the lack of left-anchoring.

Once an attacker has passed the easily circumventableHTTP_REFERER validation check, he
then has a mostly free hand to manipulate other CGI (form input) variables in order to direct an
e-mail message of his choice to some selected destination address or addresses.

FormMail obtains the desired destination e-mail address for each transmitted e-mail message
from the HTTP client. The HTTP client, in turn, is expected to obtain it from the pre-defined
value of ahidden HTML form field (recipient) within a form (or forms) associated with the
specific web site/server where a given instance of FormMail is installed. Obviously however, if
(as we have seen above) it is trivial to trick FormMail into believing that some attacker-created
form which actually resides on some arbitrary web server of the attacker’s choosing is a validref-
erer, then attackers can certainly manufacture (or simulate) forms with therecipient form
field set to any e-mail address desired.

These are the conditions which led to earlier reports of FormMail being exploited, generally by
bulk e-mail spammers, as if it were a kind ofanonymizing open e-mail relay server. The funda-
mental problem was that theHTTP_REFERER checking could be easily spoofed, and that the
pre-1.9 versions of FormMail performed no validation checking of any kind on therecipient
CGI parameter. Attackers were thus allowed to set this parameter to any desired value.

Version 1.9 of FormMail incorporated changes whose purpose was to allow the actual destination
e-mail addresses (i.e. the value given for therecipient CGI parameter) for any submitted
message to be restricted by checkingthem against an installer-supplied list of ‘‘acceptable’’

- 5 -



recipient e-mail addresses and/or recipient domains. As noted below howev er, these changes did
not fully achieve their goal. That unfortunate fact, together with the multiple flaws in
HTTP_REFERER checking (all of which are still present in the 1.9 version) imply that even the
current 1.9 version of FormMail can still be used and abused for spamming, for e-mail harass-
ment, or other purposes neither condoned or intended by the FormMail installer.

Anonymous Mail Forwarding Exploits in FormMail 1.9

As noted above, versions of FormMail up to and including 1.8 are believed to be vulnerable to
various security exploits, including but not limited to creative generation of HTTP header and
message data, leading to an installed FormMail CGI script at a targeted site behaving like an
anonymizing open e-mail relay. At present, spammers are continuing and increasing their abuse
of such earlier versions of FormMail, especially the widely deployed 1.6 version, at various sites
where these earlier versions are, unfortunately, still installed.[10]

This advisory describes various vulnerabilities in version 1.9 of the FormMail script that may
also lead to misuse and abuse of the script by remote attackers to achieve an effect functionally
equivalent to an anonymizing open e-mail relay server.

Note that many, if not most of these exploits were also present in versions of FormMail prior to
the 1.9 version, and thus it may be fairly said that the exploits described herein are not in any
sense new to the 1.9 version. For the sake of brevity however, we report these problems as vul-
nerabilities in the 1.9 version.

The vulnerabilities described herein may be broadly separated into the following categories: (1)
creative recipient addressing, (2) exploitation of theemail andrealname CGI parameters,
(3) other regular expression matching issues, and (4) mail-bombing by proxy using FormMail.
These vulnerability categories are each described in separate sections below.

Creative Recipient Addressing

The preceding section noted that FormMail 1.9 suffers from the sameHTTP_REFERER valida-
tion flaws as earlier versions of the script, thus forcing the prevention of unauthorized use/misuse
of the script to rely entirely on the code added in 1.9 which attempts to validate client-supplied
recipient e-mail addresses. These added checks contain a number of subtle and not-so-subtle
flaws however, any one of which, if exploited, renders the checking code useless and ineffective.

Briefly, the recipient address checking code added in 1.9 merely attempts to ensure that each
comma-separated substring of the client-specifiedrecipient string matches (with right-
anchoring only, and without case sensitivity) one of a set of strings specified by the person who
installs the FormMail script. The array called@recipients is used to hold these (valid
recipient address or domain) strings and each comma-delimited substring of the client-supplied
recipient CGI parameter string is checked to see that it matches (right-anchored) at least
one of these installer-specified ‘‘approved’’ recipient address or domain strings.

- 6 -



As long as this check ‘passes’, for any giv en comma-separated substring of therecipient
value, that substring will be saved in yet another array (@send_to), and later on, all elements of
the ‘‘validated’’ @send_to array are join’d back together, with comma separators, and the
resulting string replaces the old, unvalidatedrecipient CGI parameter value. That value is
then later used (when writing e-mail headers to the local mail server) in the following Perl state-
ment:

print MAIL "To: $Config{’recipient’}\n";

So, for example, if the installer of the script had provided a definition of@recipients like:

@recipients = (’pres\@elsewhere.tld’, ’ourdomain.tld’);

then all of the following client-supplied recipient addresses, if given by the HTTP client, either
alone or as elements of a comma-separated list of recipient addresses, would ‘‘match’’ some ele-
ment of the@recipients array definition shown above, and would thus be allowed as valid
recipient addresses:

pres@elsewhere.tld
PRES@elsewhere.tld (See note #1)
vice-pres@elsewhere.tld (See note #2)
Professor.Plum@ourdomain.tld
Norma.Desmond@nostalgia.ourdomain.tld
user%somewhere.tld@ourdomain.tld (See note #3)
user@somewhere.tld(ourdomain.tld (See note #4)
user@somewhere.tld(pres@elsewhere.tld (See notes #2, #4)
<user@somewhere.tld>ourdomain.tld (See note #5)
<user@somewhere.tld>user@ourdomain.tld (See note #6)
<user@somewhere.tld>pres@elsewhere.tld (See notes #2, #6)

Unfortunately, some of the ‘‘acceptable’’ strings shown above, if crafted by an attacker and then
used within a spoofed/fraudulent HTTP request may lead to undesirable consequences, i.e. the
forwarding of an associated e-mail message to some recipient (or recipients) having e-mail
addresses that the installer never intended to allow as FormMail message recipients.

Several notes regarding the example strings shown above are in order:

1. Comparison of each comma-separated sub-part of the client-suppliedrecipient
string is performed without case sensitivity. On systems where the initial (user ID) por-
tion of e-mail addresses is considered case-sensitive, this may allow misuse of FormMail
to send e-mail messages to unintended recipients having e-mail addresses with alternative
case on the same system. Worse however, this possibility opens up a hole that might per-
haps allow a remote attacker to misuse an installed FormMail script in a way that avoids
immediate detection by any local user or administrator. We will return to this point
below.

- 7 -



2. In fairness to the FormMail author, the README file supplied with FormMail version
1.9 explicitly and strongly suggests that installers should prefix any and all full e-mail
addresses they include within the definition of the@recipients array with the up-
caret (ˆ) character, thereby causing subsequent regular expression matching for those
strings to be anchored both on the left and on the right. Following that suggestion would
certainly eliminate the potential exploits noted above that refer to this note. Anyone fol-
lowing the FormMail author’s advice with regard to 1.9 installation would have written
their@recipients definition as follows:

@recipients = (’ˆpres\@elsewhere.tld’, ’ourdomain.tld’);

rather than the way it was written further above, thus eliminating such obvious potential
problems as being able to trick FormMail into sending unauthorized e-mail messages to
vice-pres@elsewhere.tld. As we hav e already noted however, even when each
and every element of the installer-defined@recipients array is set to a full e-mail
address (as opposed to merely a domain name) and even when each of the e-mail
addresses in question is left-anchored, the check for correspondence between client--
supplied recipient addresses and the installer-defined set of allowed recipient addresses is
performed in a case insensitive manner. We will return to this issue below.

3. Although therecipient parameter provided to FormMail by the HTTP client will
have newlines and carriage return characters, if present, removed by FormMail, and
although therecipients string is separated into a set of comma-separated substrings
before the recipient address validation occurs, no other validation of the form, format, or
syntax of the recipient address(es) is performed. This leaves open the possibility of using
the old and widely-known Sendmailpercent hack[11] form of e-mail addressing, at least
in cases where one or more of the elements of the@recipients array are just domain
names, as opposed to full e-mail addresses.

To understand fully why use of the percent hack is almost guaranteed to work in such
cases, one must understand that:

• FormMail is designed to work in conjunction with either Sendmail or with some
work-alike program, such as Postfix, and we may thus assume that whatever mail
server FormMail is hooked up to will almost certainly be one thatdoes support the
percent hack form of addressing.

• In normal (non-exploit) operation, the mail server resident on the same host as the
FormMail script itself will (unless the administrator has botched either his
Sendmail configuration or his FormMail configuration) accept all ‘‘locally gener-
ated’’ e-mail messages coming out of the FormMail script and addressed to any e-
mail address whose@domain part is the same as of any one of the domains listed
in the@recipients array. Thus, in the preceding examples, we can usually be
sure that the local mail server on the FormMail host will not disallow or reject any
such ‘‘locally-generated’’ e-mail message that is addressed to
user%somewhere.tld@ourdomain.tld because it will see that the
domain portion of this address isourdomain.tld. That alone will probably be

- 8 -



enough to satisfy Sendmail that it should accept (and, if necessary, forward) the
mail message in question. Also, a typical Sendmail installation, even a modern
one, will usually not itself object to any kind of forwarding of any ‘‘locally--
generated’’ e-mail message to any other domain or site, because it is typical to
assume (when configuring Sendmail) that ‘‘local’’ e-mail originators can be fully
trusted, at least to send outgoing e-mail to other sites. (Note that FormMail is act-
ing in the role of a ‘‘local’’ andtrusted user in this case.) So an attacker really only
needs to get past FormMail’s check onHTTP_REFERER (which, as we have seen,
is trivial to do) and then, if he can also get past FormMail’s check of the right-most
part of the recipient address string(s) against the@referers array he will be
able to send e-mail messages to essentially any e-mail address anywhere on the
Internet. As illustrated by the example above, use of thepercent hack form of e-
mail addressing allows the attacker to get past the latter check.

4. RFC 2822, like RFC 822 before it, specifies that within the text of so-calledstructured
mail headers (e.g.To:) any string enclosed within matching left and right parenthesis
shall be taken as being purely commentary material, and shall be ignored. Thus, if an
attacker provides a recipient string of the form:

user@somewhere.tld(ourdomain.tld

and if that string passes the (right-anchored) regular expression matching check (i.e.
matching at least one element of the@recipients array), then aTo: header line
like:

To: user@somewhere.tld(ourdomain.tld

will be generated by FormMail and passed to Sendmail. In such a case, Sendmail should
take everything between the left parenthesis and the corresponding right parenthesis as a
comment, thus leaving it with only theuser@somewhere.tld address to act on.
However in this case, there is no closing right parenthesis before the end of the header
line, so this would appear to be a case where the actual behavior of the mail server cannot
be predicted. In practice however, both Sendmail and Postfix helpfully and implicitly
supply the missing closing right parenthesis themselves, with the result being that the
(ourdomain.tld portion of theTo: header is in fact ignored, leaving only the
user@somewhere.tld part to define the actual e-mail recipient address.

5. For a client-supplied recipient string of the form:

<user@somewhere.tld>ourdomain.tld

Sendmail will subsequently be fed the corresponding mail header:

To: <user@somewhere.tld>ourdomain.tld

and when such a header is supplied to Sendmail along with Sendmail’s -t (take recipient

- 9 -



address(es) from message headers) option, reports indicate that Sendmail will send a
copy of the message touser@somewhere.tld, and that it will then ignore the
remainder of the header line, i.e. the part past the right (closing) angle bracket. (This is in
fact entirely consistent with what the mail header parsing rules contained in RFC 822 and
2822 would indicateshould actually happen in such a case.)

6. For a client supplied recipient string of the form:

<user@somewhere.tld>user@ourdomain.tld

it would appear clear that ifourdomain.tld is included in@recipients, then
such a string will pass FormMail’s recipient address acceptability check, and later, when
Sendmail is fed:

To: <user@somewhere.tld>user@ourdomain.tld

then Sendmail will most certainly send a copy of the associated e-mail message at the
very least touser@somewhere.tld, but possibly also touser@ourdomain.tld.
Reports suggest however that Sendmail will ‘‘parse out’’ the latter e-mail address and
send the message only to the former address. Even if the local mail server used on a
given victim server is one taht will parse the header shown above and then send to both e-
mail addresses, an attacker could potentially choose some infrequently- or never-moni-
tored e-mail address (such as the traditionalnobody user ID) within the targeted
domain and use that e-mail address to provide the right context for his (spoof) recipient
string. That also will allow him to get past FormMail’s recipient address acceptability
checks.

Exploitation of email and realname CGI Parameters

As noted in the preceding section, clever manipulation of therecipient CGI parameter when
invoking FormMail 1.9 can allow an attacker to bypass the recipient address checks imposed by
the installer’s definition of the@recipients array, at least in cases where the installer has
failed to define elements of this array to complete e-mail addresses (i.e. when one or more ele-
ments of the array is just a domain name) and when and if the installer has failed to left-anchor
(with ‘ˆ’) each full e-mail address within the@recipients array definition. Even in cases
where all elements of the@recipients array are full e-mail addresses and where these are all
left-anchored, an attacker may perhaps still be able to bypass FormMail’s recipient address
checks by exploiting various weaknesses in FormMail’s regular expression matching code, as we
will show in the next section.

Clever bypassing of the checks applied to the comma-separated substrings of therecipient
CGI parameter may however not even be necessary so long as the attacker is willing to supply
cleverly constructed values for theemail and/orrealname CGI parameters, and so long as
the attacker is willing to allow one copy of his e-mail message to go to some ‘‘permitted’’ recipi-
ent address, in addition to some other attacker-specified list of addresses.

- 10 -



The email andrealname CGI parameters may undergo even less scrutiny by FormMail
than the comma-separatedrecipient substrings. In fact theemail and realname CGI
parameters may undergo no validation whatsoever. (Therealname parameter most certainly
does not undergo any validation whatsoever within FormMail, and theemail parameter will not
undergo any validation as long as it is not listed as arequired field in the list of required form
fields that is itself initialized from the client-supplied value of yet another hidden form field.
Given that an attacker, either a determined one or a hurried and careless one, will most probably
set the value of therequired hidden form field to null or no value, we will just simplify the
remainder of our presentation by assuming, from here forward, that neither theemail CGI
parameter nor therealname CGI parameter undergo any validation.)

One critical additional point to note here is that neither theemail CGI parameter value nor the
realname CGI parameter value are in any way ‘‘cleaned up’’ by FormMail before they are
printed to the local mail server. Specifically, the values of these variable do not have carriage
returns or newlines removed before they are given to the mail server.

Once they hav e been supplied by the HTTP client, both theemail andrealname CGI param-
eter values are printed, verbatim and without filtering, to the local mail server via the following
Perl statement:

print MAIL "From: $Config{’email’} ($Config{’realname’})\n";

One’s first thought upon seeing this statement is that the lack of filtering or validation applied to
theemail andrealname CGI parameters cannot possibly be harmful, given the benign con-
text (i.e. a From: header) within which these values will appear. That thought would be mislead-
ing however, because of the lack of newline removal for these parameter values.

Because an attacker can embed newlines in either or both of these CGI variable values, he can
also effectively change thecontext in which the remaining (rightward) characters of either value
appear to the local mail server. Specifically, an attacker could set the value of theemail
parameter to some string such as:

IGNORED\nCc: user@somewhere.tld,...

where \n represents a newline character. This rather simple trick provides the attacker with
access to a self-generatedCc:, Bcc:, or (secondary)To: header context which, once achieved,
provides the attacker with an avenue to direct the local mail server to send the attached message
to some arbitrary set of e-mail addresses, in addition to whatever address may have been speci-
fied (via therecipient CGI parameter) for inclusion in the earlierTo: header.

As should be apparent from the Perl print statement shown above, this same context shift
(achievable via embedded newlines) may also and equally be exploited via clever construction of
a suitable attacker-supplied value for therealname CGI parameter. In this case however, the
attacker would need to take care to also escape from the confines of the paired parentheses that
the script will supply to enclose therealname value. Given that therealname parameter

- 11 -



value will appear in the mail headers surrounded by a pair of open and close parenthesis, the
‘‘smuggling in’’ of additional recipient addresses via therealname CGI parameter requires
the attacker to include some strategically-placed parenthesis of his own in the value he passes to
the victim web server for therealname parameter. For example, the value:

IGNORED)\nCc: user@somewhere.tld\nX-Ignore: (

could be supplied by an attacker as therealname CGI parameter value, thus closing the
already-opened SMTP header comment, escaping to, and creating a new (Cc:) e-mail header
context (which is then filled with victim e-mail addresses), escaping again to another new e-mail
header context, and then finally supplying a open parenthesis to match the closing one that will
be supplied by the Perl print statement within FormMail.

Last but by no means least, it should be noted that vulnerable FormMail installations may be less
than ideal as a vehicles for distributing e-mail messages, either unsolicited or otherwise, due to
FormMail’s rather inconvenient (for the spammers) habit of appending its own unique legend just
ahead of the body text of any giv en mail message that it forwards. FormMail always prepends a
set of body text lines having the following general form to each e-mail message it passes to the
local mail server:

Below is the result of your feedback form. It was submitted by
(sender address) on date/time stamp
---------------------------------------------------------------

This additional leading body text would appear to be annoying to spammers who would much
prefer to have the text of their own messages appear at the very start of the message body text.
(We assume that this spammer-annoying aspect of FormMail is one of the reasons, if not the pri-
mary reason that spammers have generally shown a preference for using open mail relays, as
opposed to open FormMail scripts, for sending their messages.)

Unfortunately however, giv en that theemail andrealname CGI parameters of FormMail
may contain embedded newlines, it is apparent that either of these parameters may be set, by an
attacker, to a value which includes not only additional recipient addresses, but also additional
mail headers and additional initial message body text of the attacker’s choosing. For example,
theemail parameter could be set to:

\nCc: user@somewhere.tld\nSubject: $$$\n\nMAKE MONEY FAST!!!

thus causing the text "MAKE MONEY FAST!!!" to appear in the outgoing message as the very
first line of the message’s body text. Furthermore, a value such as the one shown just above
could be followed by arbitrarily many additional newline characters, thus pushing the FormMail
supplied legend text far down below the attacker’s desired subject header and initial message text
(and perhaps even entirely off the ‘front page’ of what the messages recipient will see when he
first looks at the received message).

- 12 -



This tactic may of course be applied with essentially equal effect to either theemail or real-
name parameters, except that the caveats mentioned above concerning the balancing of paren-
thesis would apply in the case of manipulation of therealname parameter.

These possible tactics for ‘‘hiding’’ the otherwise spammer-annoying FormMail leading body
text are not, unfortunately, the only ones possible. As one careful early reviewer of this advisory
noted, the vulnerability which allows an attacker to include newlines in theemail an/or
realname CGI parameters might also open up an avenue whereby the FormMail-supplied lead-
ing body text could be effectively removed from the view of a message recipient via the careful
construction of MIME e-mail headers which achieve that exact effect. (This design of an exploit
making use of this approach is left as an exercise for the reader.)

Other Regular Expression Matching Issues

We hav e noted above sev eral ways of bypassing FormMail’s attempts to validate a
client-suppliedrecipient string, where most of these methods rely on various obscure and
not widely known aspects of e-mail address parsing rules. These are by no means the only ways
to circumvent these recipient address validation checks however. These checks may also be
bypassed via at least three different exploits relating to FormMail’s use of regular expressions for
e-mail address matching/validation. These additional exploit techniques are described below.

The first regular expression exploit we present offers an attacker an easy opportunity to get past
FormMail’s recipient address checking tests, although perhaps in a way that will be quickly
detected by an alert local administrator (of the exploited server). Note that due to the flow-of-
control logic used within FormMail, an attackermust get past these tests at least once, or else no
e-mail messages will be sent at all.

Consider the case where the local FormMail installer provided the following definition for the
@recipients array:

@recipients = ("ˆjohn\@our-server.tld");

Given that the string enclosed within the double quotation marks will in fact be used, verbatim,
as a regular expression within a Perl regular expression match, and given that within such regular
expressions, each period character actually stands for a single-characterwild card character, an
attacker could supply a value for therecipient CGI parameter such as:

john@our-serverXtld

In such a case, unless by some extremely remote chance, there happens to be another server on
the same local network whose non-qualified node name isour-serverXtld, the mail mes-
sage sent by the attacker through FormMail to the specifiedrecipient address (and perhaps
also to some additional set of recipient addresses smuggled in via theemail and/orrealname
CGI parameters) will almost certainly generate aundeliverable bounce message for the non-

- 13 -



existentjohn@our-serverXtld address. Where will this bounce message go?

We would hope that the undeliverable bounce message would be directed to some responsible
local administrator who would then quickly realize that the game is afoot, and that somebody
somewhere is presently attempting to exploit the locally-installed copy of FormMail, but in point
of fact this is unlikely to occur.

What is clear is the the bounce message, by convention and by SMTP standards, will be sent to
the envelope sender address that was attached to the original e-mail message that generated the
bounce. What will the original envelope sender address be?

Because FormMail itself generated the original message, and because FormMail itself was
executed as a child process of the local web server, the original envelope sender address will typ-
ically be whatever local user-ID the local web server is run under, or rather, whatever local user-
ID it changes to after it starts up.

For typical Apache installations, the account in question is, quite often, the localnobody
account. That account name is, in turn, quite often and quite typically aliased (in the local mail
server’s aliases file) to/dev/null, in other words to the oblivion black hole.

The implications here should be apparent. An attacker who attempts to exploit FormMail may
be easily able to escape immediately detection by local administrators simply by exploiting
FormMail’s inattention to the important detail that within the context of Perl regular expression
matching, periods mean something other than literal periods. Exploitation of this inattention to
detail may allow an attacker to ‘‘pass’’ FormMail’s recipient address check in a very stealthy
fashion. Once the attacker has gotten past the recipient check, at least once, then he may exploit
the email and/or realname vulnerabilities of FormMail (described above) to also direct
copies of his mail message to other targeted e-mail addresses.

Other, perhaps even more interesting variations on this theme are also possible, and are perhaps
ev en more directly dangerous. A FormMail installer who had defined his@recipients array
to:

@recipients = ("ourdomain.tld");

in order to allow FormMail to be employed to send mail to any user of theourdomain.tld
domain might later be unpleasantly surprised to begin receiving spam complaints from
somewhere.tld users when some miscreant finally figures out that a recipient address such
as:

user@somewhere.(ourdomain)tld

passes the (right-anchored only) regular expression match againstourdomain.tld with flying
colors, only to subsequently have its parenthesized portion treated as a (non-significant) com-
ment by the local RFC-conforming mail server.[14]

- 14 -



Yet another aspect of the weakness of FormMail’s regular-expression based attempts to validate
recipient address strings is its total insensitivity to important lexical aspects of domain names
themselves, in particular, domain label boundaries.

FormMail installers who have elected to use one or more domain names in their definition of the
@recipients array may be dismayed to learn that the lack of left-anchoring in FormMail’s
regular expression matching, together with FormMail’s inattention to the importance and signifi-
cance of domain label boundaries may lead to exploitation of a locally-installed FormMail, by
outside spammers, to spam users in other domains whose own domain names have right-
anchored substrings which just happen to exactly match the local domain name, even though
there is otherwise no relationship between those other domains and the local domain.

For example, the following@recipients array definition:

@recipients = ("x.biz");

clearly allows the local FormMail script which contains it to direct FormMail-generated e-mail
messages to various users having e-mail addresses directly within thex.biz domain. However
what may be less clear is that it also allows FormMail-generated messages to be directed to per-
sons having e-mail addresses within, for example, thedepartment-y.x.biz domain. More
troubling is that it also allows FormMail-generated messages to be directed to any person having
an account in the (clearly unrelated)generation-x.biz domain. This problem arises
because FormMail is not astute enough to understand that, for example, the domain name
generation.x.biz is related to the x.biz domain while the domain name
generation-x.biz is entirely unrelated. Thus, an instance of FormMail installed on a web
server belonging to x.biz could potentially be used to spam users in the
generation-x.biz domain.

Lastly, as we noted earlier, one method of circumventing FormMail’s attempt to validate the
recipient CGI parameter against elements of the installer-supplied@recipients array is
to simply use alternative case for the user ID portion of the client-suppliedrecipient e-mail
address. At the very least, this might allow an attacker to use FormMail to send an e-mail mes-
sage to, for example, a user whose e-mail address isJOHN@localhost.tld ev en though the
installer only intended to allow FormMail messages to go to the user whose e-mail address is
john@localhost.tld.[12]

This fact alone may be properly viewed as being essentially insignificant. At worst, the case
insensitivity of the FormMail recipient address checks would seem to allow misdirection of
FormMail messages to different (and unintended) users of the same target recipient system where
some other valid and authorized FormMail message recipient also has an account.

Recall however that the logic of FormMail demands that at least one of the comma-separated
substrings of the client-suppliedrecipient CGI parameter value must in fact ‘pass’ the recipi-
ent address validation check. Otherwise no e-mail message will be sent, regardless of whatever
other clever manipulations an attacker might have undertaken.

- 15 -



Exploitation of the case-insensitivity of therecipient address checking code may provide yet
another means for an attacker to pass the recipient address check, at least once, thus insuring that
his desired e-mail message will in fact be sent by FormMail. Furthermore, it may allow the
recipient address check to be bypassed even as it also allows the attacker to avoid immediate
detection of his activities, either by any authorized FormMail message recipient or by any local
administrator.

For example, let us suppose that the@recipients array was previously defined by the
installer as follows:

@recipients = ("ˆjohn\@our-server.tld");

Based on the other vulnerabilities noted above, an attacker could easily spoof his way past the
HTTP_REFERER check and he could then provide some clever values for either theemail CGI
parameter or therealname CGI parameter, or both. Those values could induce FormMail to
send a desired e-mail message to some additional e-mail recipient addresses, above and beyond
whatever address may have been provided by the attacker as the client-suppliedrecipient
CGI parameter value. But ev en if he does all this, the attacker must still get past the script’s
checks on therecipient value, at least once, in order to induce FormMail to send any e-mail
messages at all.

To get past the checks on the validity of therecipient CGI parameter, the attacker might set
this parameter to the valueJOHN@our-server.tld. This would cause the recipient check to
pass, once, and that in turn would enable the script to continue further in its processing of the
HTTP request, whereupon any of the several other FormMail vulnerabilities could then be
exploited. In such a case however, the local mail server would also attempt to send a copy of the
attacker’s message to the e-mail addressJOHN@our-server.tld. What then?

In the most common case, i.e. whereour-server.tld is in fact the local domain, and where
the mail server providing mail service for the local domain is either Sendmail or Postfix, the
attacker will typicallynot be able to hide his activities via this sort of case-sensitivity exploita-
tion because the local mail server (Sendmail or Postfix) will actually treat the user ID portion of
a local e-mail address in a case-insensitive manner. Thus, even if the attacker tricks the
FormMail script into attempting to send an e-mail message toJOHN@our-server.tld that
message will still be delivered to thejohn@our-server.tld mailbox. The localjohn user
will thus be alerted that the local FormMail script is being used, and possibly abused, and quick
remedial action may then be taken to halt further abuse.

If however the specific mail server that provides mail service for theour-server.tld
domain treats local user IDs in a case-sensitive manner, then the user IDjohn may exist, and
may accept incoming e-mail, even though the user IDJOHN does not exist and does not accept e-
mail.

In this case, any message sent to theJOHN@our-server.tld account will bounce as unde-
liverable. Where will it bounce to?

- 16 -



As noted previously, the message should be, and typically will be bounced back (along with an
undeliverable notice) to its envelope sender address. And as was also previously noted, the
envelope sender address will almost invariably be the local user ID under which both the local
web server and any CGIs that it invokes run. That account, quite often, is the localnobody
account, and e-mail for the localnobody account is, as often as not, aliased to/dev/null.
Thus, if the attacker arranges to ‘‘pass’’ the FormMail recipient address validation test by chang-
ing the case of the user ID portion of some knownauthorized recipient e-mail address, and if the
alternatively-cased recipient address is itself undeliverable, then this may represent an opportu-
nity for the attacker. Specifically, it may allow the attacker to trick FormMail into believing that
it has received at least one valid recipient address even though the message sent to that address
will first be bounced as undeliverable and then, subsequently, will disappear, quietly and con-
veniently, down a black hole,without alerting any local end-users or any local administrators on
the exploited system that exploitation is occurring.

It should additionally be noted that even in cases where the web server itself is run under some
account other than thenobody account, the account that the web server is in fact run under will
often and typically be one for which incoming e-mail messages, including bounces, are dumped
into a black hole. Furthermore, even for web server execution accounts that are not aliased to
/dev/null, local administrators may not be expecting any incoming e-mail for the web server
execution account, and thus, any e-mail thatdoes arrive for that account may be monitored only
rarely or perhaps never. Such a situation is exactly what an attacker wishing to escape immediate
detection would desire.

In summary, it may safely be said that the case insensitivity of the FormMail recipient address
checking code may open up additional possibilities for quietly covering up abuse and exploita-
tion of the other FormMail security flaws detailed herein.[13]

Mail-Bombing by Proxy Using FormMail

Although exploitation of installed FormMail scripts for spamming purposes is far and away the
most likely scenario involving misuse and abuse of FormMail, a desire for completeness compels
us to note some additional ways in which typical FormMail installations may be abused to cause
harm or annoyance to others, even if only indirectly.

In general, any Internet miscreant may easily flood any Internet e-mail account of his choosing
by simply sending a flood of e-mail messages directly to that target account. This direct
approach is however known to be a good way to have one’s outbound e-mailing privileges
revoked in short order.

Being aware of this fact, many Internet miscreants bent on performing an act ofmail bombing
against a given target e-mail account will instead elect to do so only indirectly, employing some
intermediary agent or system that can be induced to send e-mail messages to arbitrary attacker-
specified e-mail addresses. To the extent that the intermediary prevents the final victim of the
mail bombing from easily learning the identity and/or IP address of the mail bomb originator it

- 17 -



will be seen as a potentially useful tool for astealth mail bomb attack.[15]

Given these facts, together with the multiple FormMail vulnerabilities described above, it should
be immediately seen that any installed instance of the FormMail script may be employed, in vari-
ous ways, as part of astealth mail bombing attack directed against an arbitrarily selected target e-
mail address.

It has certainly been shown above that FormMail may be induced to send arbitrary messages to
arbitrary target addresses in a way which prevents the final recipient from being able to easily
determine the IP address of the actual message originator. This fact alone could provide the basis
for a stealth mail bombing attack. Additional possibilities for such attacks, involving FormMail,
may also exist however.

For example, if FormMail is being employed on a given web site in conjunction with an e-mail
auto-responder of some kind, then it may be possible for an attacker to repeatedly invoke
FormMail while setting theemail CGI parameter to the e-mail address of his intended victim.
The victim in this case will receive a flood of ‘‘auto-responses’’ for messages that he himself did
not originate, and these auto-responses may (and quite often will) contain no indication of the IP
address that originated whatever message or messages have triggered the auto-responder to send
a response message. Note also that even for a relatively ‘‘smart’’ auto-responder that makes it a
point to attach the e-mail headers of each originaltriggering e-mail message to each of the auto-
response messages it generates, the trace information provided by such headers will lead back
only as far as the web server on the system that hosts the FormMail script. That information will
of course be insufficient to determine the IP address used by the actual instigator of the mail
bomb.

Because of the above scenario, it is strongly recommended that FormMail never be intentionally
employed in conjunction with any kind of e-mail auto-responder.

------------------------------------------------------------
[1] The canonical reference for the original ‘FormMail spamming’ advisory is:

http://www.securityfocus.com/archive/1/168177

Note that even earlier, reports had surfaced regarding FormMail and environment variable infor-
mation leakage:

http://packetstorm.decepticons.org/advisories/blackwatchlabs/BWL-00-06.txt

http://www.securityfocus.com/bid/1187

and a fix was developed for this problem:

http://www.securityfocus.com/archive/1/62033

- 18 -



A remote command execution vulnerability was also reported (Aug, 1995) for the 1.0 version of
FormMail:

http://www.securityfocus.com/bid/2079

[2] The original report of possible widespread scanning of the net for vulnerable FormMail
scripts may be found at:

http://www.extremetech.com/article/0,3396,s%253D25124%2526a%253D18236,00.asp#story4

[3] The home page for one allegedly ‘‘fixed’’ version of FormMail may be found at:

http://www.mailvalley.com/formmail/

An entirely separate ‘‘fixed’’ version of FormMail may be found at:

http://nms-cgi.sourceforge.net

Unfortunately, neither of these security-enhanced versions of FormMail address all of the secu-
rity issues raised herein.

[4] Inexplicably, even though versions of FormMail prior to 1.9 are known to be exploitable (as
what amounts to anonymizing open mail relays) the author of this script continues to distribute
several of his earlier, insecure versions of the script (for use with/on various versions of MS Win-
dows) via his web site and the FormMail home page. This will naturally tend to contribute to a
worsening of the existing global problem of insecure FormMail installations, over time.

[5] We use the termanonymized herein to indicate that the IP address of the actual message origi-
nation point will not be present in any of the e-mailReceived: headers contained in the mes-
sage themselves. This lack of tracing information makes it essentially impossible for a message
recipient to determine the actual origination point, at least not without the aid of the administra-
tor of the server that hosts the FormMail script and not without a careful search of log files by
that administrator.

[6] The lynx web browser provides the-noreferer command line option to achieve this
exact effect.

[7] Javascript, in particular, implements asubmit() built-in primitive that can be used to sim-
plify attacks on web CGIs. The authors have found no way to induce Javascript’ssubmit()
primitive to suppress the inclusion of aReferer: header in the HTTP request generated by a
call tosubmit() however.

[8] There are, of course, other ways to cause typical web servers to ignore some rightward part of
a complete URL. The forward slash character (‘/’) can also be used to achieve the same effect
when the portion of the URL to the right of the relevant forward slash can be located by the

- 19 -



relevant web servers and when it is an ordinary file (as opposed to a directory).

[9] There are, of course, other ways by which one could arrange forReferer: HTTP headers
to be suppressed, the most obvious of which is to make use of any of the Internet’s many
anonymizing HTTP proxy servers.

[10] One of the authors of this advisory (Guilmette) is currently maintaining a list of the IP
addresses of such sites for spam blocking purposes.

[11] Please see:

http://web.nps.navy.mil/˜miller/percent-hack.html

for a brief description of the traditional (if non-standard)percent hack e-mail addressing nota-
tion.

[12] Of course, different operating systems have different conventions and practices with regards
to the case sensitivity... or lack thereof... of local user IDs. It should be noted however that
FormMail is most frequently installed on UNIX or UNIX-like systems, and that these systems
do, in virtually all cases, treat local user IDs as being case sensitive, thus allowing for the possi-
bility that there might be a user whose ID isjohn and also another user whose ID isJOHN,
both on the same single system.

[13] Webmasters may also wish to reconsider the advisability of running web servers under
accounts whose incoming e-mail is either sent to/dev/null or ignored. It may actually be
wiser to select some account other than thenobody account to run a web server under, and
then to alias that other account toroot or some other frequently-monitored local administrator
address. Thenobody account should more probably be preserved as an effective e-mail alias
for /dev/null however, as there are certainly instances in which you really don’t want any
bounces, no matter what.

[14] See RFC 2822, especially its discussion of parenthesized comments and e-mail address syn-
tax.

[15] An indirect mail bomb attack against a given e-mail address may be easily undertaken sim-
ply by sending a large number of e-mail messages to some non-existent and/or otherwise unde-
liverable e-mail address on some specific third-partyintermediary system with the envelope
sender (i.e. bounce back) e-mail address set to the e-mail address of the intended victim. Such an
indirectmail bombing via bounces attack is not at all stealthy howev er, because in the vast major-
ity of cases the attacker’s IP address will be shown clearly in theReceived: headers of the
messages that triggered the bounces, and these in turn will typically be included in the bounce
messages received by the final victim.

- 20 -


